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Hardy Spaces

Definition

For p ∈ (0,∞), the Hardy space Hp consists of holomorphic functions on
D with

‖f ‖p := sup
r∈[0,1)

{
1

2π

∫ 2π

0
|f (re iθ)|p dθ

} 1
p

is finite.

If f (z) =
∞∑
n=0

anzn, then ‖f ‖22 =
∞∑
n=0
|an|2.

For p ≥ 1, Hp is a Banach space and H2 is aHilbert space.

If 0 < p < q, then Hq ( Hp.

hp = Harmonic Hardy space

Hg
p = generalized Hardy space .
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Discrete function spaces

In recent years, there has been a considerable interest in the study of
function spaces on discrete set such as tree (more generally on graphs).
For example,

Lipschitz space of a tree (discrete analogue of Bloch space) [5]

Weighted Lipschitz space of a tree [3],

Iterated logarithmic Lipschitz space of a tree [2],

Weighted Banach spaces of an infinite tree [4] and so on.
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Graphs

Definition (Rooted Tree Graph)

A tree T is a locally finite connected graph without cycles. A rooted tree
is a tree in which a special vertex (called root) is singled out.

Every tree graph can be thought of as a metric space under edge counting
distance.
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Rooted tree

Let T be a rooted tree with root o.

|v | denotes the distance between o and v .

For n ∈ N0,Dn denotes the set of all vertices v with |v | = n.

cn denotes the number of elements in Dn.

For example, if T is a (q + 1)−homogeneous tree, then

cn =

{
(q + 1)qn−1 if n ∈ N
1 if n = 0.

If T is a 2−homogeneous tree, then cn = 2 for all n ∈ N.
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Discrete Hardy space

For every n ∈ N, we introduce

Mp(n, f ) :=


 1

cn

∑
|v |=n

|f (v)|p
 1

p

if p ∈ (0,∞)

max
|v |=n

|f (v)| if p =∞,

and Mp(0, f ) := |f (o)|.

Definition

The discrete analogue of the generalized Hardy space ( Tp) defined by

Tp := {f : T → C| ‖f ‖p := sup
n∈N0

Mp(n, f ) <∞}.

Tp,0 := {f ∈ Tp : lim
n→∞

Mp(n, f ) = 0}
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Inclusions

For 1 ≤ p ≤ ∞, ‖·‖p induces a Banach space structure on the spaces
Tp and Tp,0.

As a direct consequence of Holder’s inequality, for 0 < p < q ≤ ∞,
we have

Mp(n, f ) ≤ Mq(n, f ) for all n ∈ N0.

For 0 < p < q ≤ ∞, Tq ⊆ Tp and Tq,0 ⊆ Tp,0.

These inclusions are proper if and only if {cn} is a unbounded
sequence.
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Separability

For x = (x0, x1, x2, . . .) ∈ l∞, define fx : T → C by fx(v) = xn if
|v | = n. Then,

Mp(n, f ) = |xn| for all n ∈ N0 and ‖fx‖p = ‖x‖∞.

The map x 7→ fx is a linear isometry from l∞ to Tp.

Theorem

For 0 < p ≤ ∞, the space Tp is not separable, whereas Tp,0 is a separable
space as the span of {χv : v ∈ T} is dense in Tp,0.
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Growth estimate

If f ∈ Tp, then for v ∈ T with |v | = n, we have

1

cn
|f (v)|p ≤ Mp

p (n, f ) ≤ ‖f ‖pp.

Norm convergence in Tp implies pointwise convergence:

If lim
n→∞

‖fn − f ‖ = 0, then lim
n→∞

fn(v) = f (v) for each v ∈ T .

Choose two vertices v1 and v2 such that |v1| = 1 and |v2| = 2. Take
f =
√

c1χv1 and g =
√

c2χv2 . Then,

‖f ‖2 = ‖g‖2 = ‖f + g‖2 = ‖f − g‖2 = 1

and hence the parallelogram law

‖f + g‖22 + ‖f − g‖22 = 2(‖f ‖22 + ‖g‖22)

is not satisfied. Therefore, T2 cannot be a Hilbert space under ‖.‖2.
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Natural operators

Definition

Let X be a linear space consisting of complex-valued functions defined on
a set Ω and let φ be a self-map of Ω. The composition operator Cφ with
symbol φ is defined as

Cφf = f ◦ φ for f ∈ X

and for a given complex valued function ψ defined on Ω, the multiplication
operator with symbol ψ is defined by

Mψf = ψf for f ∈ X .

Cφ, Mψ are linear maps (always).

The class of these operators is not so narrow as it may look at a first
glance.
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Examples

Consider the backward shift operator on the sequence space l2

defined by

(x(0), x(1), x(2), . . .) 7→ (x(1), x(2), x(3), . . .).

By viewing l2 as square summable power series, this is a
multiplication operator Mψ induced by ψ(z) = z or this can be
viewed as a composition operator Cφ induced by φ(n) = n + 1.

Consider the evaluation map on a function space (eg: C[0,1], dual of
normed linear space, Hp, B, . . . )

eva(f ) := f (a).

This is a composition operator Cφ induced by the constant function
φ ≡ a.
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Multiplication operators

Let X denotes Tp or Tp,0 with norm ‖·‖p, where 1 ≤ p ≤ ∞.

Theorem

Let Mψ be multiplication operator on X defined on a homogeneous rooted
tree T . Then,

Mψ is a bounded linear operator on X if and only if ψ is a bounded
function on T . Moreover, ‖Mψ‖ = ‖ψ‖∞.

Mψ is a compact operator on X if and only if ψ(v)→ 0 as |v | → ∞.

Mψ is an isometry on X if and only if |ψ(v)| = 1 for all v ∈ T .

Mψ is invertible on X if and only if 0 < m ≤ |ψ(v)| ≤ M <∞ for all
v ∈ T .

The spectrum of Mψ is given below:
1 σe(Mψ) = Range of ψ = ψ(T );
2 σ(Mψ) = ψ(T ).
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Questions

Cφ T∞ (T∞,0) Tp (Tp,0) on Tp (Tp,0) on
2−homogeneous trees k−homogeneous trees

Bounded

Norm

Compact

Isometry

Invertible
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Composition operators on T∞

Theorem

Every self map φ of T induces bounded composition operator on T∞
with ‖Cφ‖ = 1.

Cφ is compact on T∞ if and only if φ is a bounded self map of T .

Cφ is an isometry on T∞ if and only if φ : T → T is onto.

The operator Cφ is invertible on T∞ if and only if φ is bijective on T .

Theorem

The composition operator Cφ is bounded on T∞,0 if and only if
|φ(v)| → ∞ as |v | → ∞. Moreover, ‖Cφ‖ = 1.

There are no compact composition operators on T∞,0.

Cφ is an isometry on T∞,0 if and only if φ : T → T is onto and
|φ(v)| → ∞ as |v | → ∞.

The operator Cφ is invertible on T∞,0 if and only if φ is bijective on
T and |φ(v)| → ∞ as |v | → ∞.
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2−homogeneous trees

Theorem

Let T be a 2−homogeneous tree and 1 ≤ p <∞.

For every self map φ of T , Cφ is bounded on Tp.

Cφ is compact on Tp if and only if φ is a bounded self map of T .

The operator Cφ is invertible on Tp if and only if φ is bijective on T .

Theorem

Let T be a 2−homogeneous tree and let 1 ≤ p <∞.Then Cφ is an
isometry on Tp if and only if the following properties hold:

1 φ(o) = o

2 φ is onto

3 |φ(v)| = |φ(w)| whenever |v | = |w |
4 If φ(w) 6= o for some w ∈ T , then φ is injective on D|w |.
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Norm estimates

Theorem

Let T be a 2−homogeneous tree with root o and let Dn = {an, bn} for
each n ∈ N and φ be a self map of T , 1 ≤ p <∞.

If φ(o) 6= o, then ‖Cφ‖p = 2.

If φ(o) = o, then any one of the following distinct cases must occur:

(a) Either φ ≡ o or for every n ∈ N, φ(Dn) = Dm for some m ∈ N then
‖Cφ‖p = 1.

(b) If φ maps exactly one element of Dn to o for each n ∈ N then
‖Cφ‖p = 3

2 .
(c) Either there exist a n ∈ N such that φ(an) = φ(bn) 6= o or there exist a

n ∈ N such that |φ(an)| and |φ(bn)| are not equal and both are
different from 0 then ‖Cφ‖p = 2.

Theorem

Let T be a 2−homogeneous tree. Then, the composition operator Cφ is
bounded on Tp,0 if and only if |φ(v)| → ∞ as |v | → ∞.
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Bounded self map

Let φ be a self map of homogeneous rooted tree T .

For n ∈ N0 and w ∈ T , let Nφ(n,w) denote the number of
pre-images of w for φ in |v | = n. That is Nφ(n,w) is the number of
elements in {φ−1(w)}

⋂
Dn.

Finally, for each m, n ∈ N0,

Nm,n := max
|w |=m

Nφ(n,w).

Theorem

If T is a (q + 1)−homogeneous tree with q ≥ 2 and φ is a self map of T
such that sup

v∈T
|φ(v)| = M, then ‖Cφ‖p ≤ cM . Moreover, ‖Cφ‖p = cM if

and only if

sup
n∈N0

NM,n

cn
= 1.
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Norm estimates

Theorem

Let T be a (q + 1)−homogeneous tree and 1 ≤ p <∞. Then Cφ is
bounded on Tp if and only if

α = sup
n∈N0

{
1

cn

∞∑
m=0

Nm,ncm

}
<∞.

Moreover, ‖Cφ‖p = α.

Theorem

Let T be a (q + 1)−homogeneous tree and consider Cφ on Tp, where
1 ≤ p <∞, q ≥ 1 and φ be an automorphism of T . Then we have

(i) ‖Cφ‖ = 1 if φ(o) = o

(ii) ‖Cφ‖p = (q + 1)q|φ(o)|−1 if φ(o) 6= o.
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Isometry and Invertibility

Theorem

Let T be a (q + 1)−homogeneous tree with q ≥ 2 and let 1 ≤ p <∞.

Denote
ckNk,n

cn
by λk,n. Then, Cφ is an isometry on Tp if and only if the

following properties hold:

1 |φ(v)| ≤ |v |. In particular, φ(o) = o.

2

n∑
k=0

λk,n = 1 for all n ∈ N0.

3 For each k ∈ N0, Nφ(n,w) = Nk,n whenever |w | = k.

4 sup
n∈N0

λk,n = 1 for all k ∈ N0. In particular, φ is onto.

Theorem

Let T be a (q + 1)−homogeneous tree with q ≥ 2, and 1 ≤ p <∞. Cφ is
invertible on Tp, if and only if φ is invertible and there exists an M > 0
such that | |φ(v)| − |v | | ≤ M for all v ∈ T .
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Compact composition operators

Theorem
1 Every bounded self map φ of T induces compact composition

operator on Tp.

2 Let T be a (q + 1)−homogeneous tree. If Cφ is compact on Tp, then

sup
n∈N0

{
q|w |−nNφ(n,w)

}
→ 0 as |w | → ∞.

3 If Cφ is compact on Tp, then |v | − |φ(v)| → ∞ as |v | → ∞.

4 Cφ is a compact operator on Tp whenever

1

cn

∞∑
m=0

Nm,ncm → 0 as n→∞.

5 There are no compact composition operators on Tp,0.
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Examples

Examples

For each n ∈ N0, choose the vertex vn ∈ Dn. Define φ1(v) = vn if
|v | = n. Then, Cφ1 is not a bounded operator on Tp.

φ2(v) =

{
o if v = o

v− otherwise

where v− denotes the parent of v . Then, Cφ2 is bounded on Tp

which is not compact.

For each n ∈ N0, choose a vertex vn such that |vn| = n. Define a self
map φ3 by

φ3(v) =

{
vk if v = v2k for some k ∈ N
o otherwise.

Then, φ3 is an unbounded self map of T which induces compact
composition operators on Tp.
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Examples

Examples

For each n ∈ N which is not of the form n = 4k , k ∈ N0, choose
vn ∈ T such that |vn| = n. Define

φ(v) =


v4k+2 if v = v2k+1 for some k ∈ N0,
v2k+1 if v = v4k+2 for some k ∈ N,
v elsewhere.

Clearly, φ is bijective on T . But Cφ is an unbounded operator on Tp

for every (q + 1)−homogeneous trees with q ≥ 2.

There are bijective self maps φ of T which induce a bounded
composition operator Cφ on Tp over (q + 1)−homogeneous trees with
q ≥ 2, but φ−1 does not induce a bounded composition operator.
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Questions

1 As with the lp and the Hp spaces, whether Tp is not isomorphic to Tq

when p 6= q? What can be said about the dual of Tp?

2 What can be said about the spectrum of Cφ?

3 Necessary and sufficient conditions for Cφ to be compact operator on
Tp over (q + 1)−homogeneous trees with q ≥ 2?

4 What about bounded and compact composition operators on Tp,0

over (q + 1)−homogeneous trees with q ≥ 2?
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